Terrie Inder, MBChB, MD
Course Co-director
Chair, Department of Pediatric Newborn Medicine,
Brigham and Women’s Hospital;
Mary Ellen Avery Professor of Pediatrics in the Field of Newborn Medicine,
Harvard Medical School

Terrie E. Inder, MBChB, MD, is the first appointed chair of the newly transitioned Department of Pediatric Newborn Medicine at Brigham and Women’s Hospital in Boston. As a dual boarded child neurologist and neonatologist, her major discoveries have been in clinical and translational research into the nature and timing of brain injury in preterm and high-risk term born infants.

Dr. Inder, a native New Zealander, received her education and training at the University of Otago, Dunedin, where she also completed her residency in Pediatrics and fellowship in Newborn Medicine. She then went on to complete a fellowship in Pediatric Neurology at Boston Children’s Hospital. Her first faculty appointment was at the University of Melbourne, Royal Children’s Hospital in 2001 before moving to St Louis Children’s Hospital at Washington University in St Louis as a Professor in 2005. She has been recognized for her skills in leadership as Director of the Washington University Intellectual and Developmental Disabilities Research Center. Her greatest passion is in the mentorship of young faculty.

Mohamed El-Dib, MD
Course Co-director
Director of Neonatal Neurocritical Care, Department of Pediatric Newborn Medicine,
Brigham and Women’s Hospital;
Assistant Professor of Pediatrics, Harvard Medical School
Mohamed El-Dib, MD is the Director of Neonatal Neurocritical Care Brigham and Women’s Hospital (BWH) and Assistant Professor of Pediatrics at Harvard Medical School. He is a neonatologist with additional training in neonatal neurology. The BWH Neonatal Neurocritical program is a multidisciplinary group of specialty trained nurses, neurologists, neuroradiologists and developmental specialists. This group has established guidelines and protocols aiming at providing standardized, focused and integrated care for babies with or at risk for brain abnormality or injury. The Brigham and Women’s new state of the art NICU provides comprehensive care for neonates with neonatal encephalopathy including therapeutic hypothermia, neuromonitoring and neuroimaging.

Dr. El-Dib has numerous publications in the field of neonatal neurology. He has focused his research on neonatal neuromonitoring and neuroprotection. In neuromonitoring, he has used amplitude integrated EEG (aEEG) to evaluate brain maturation in premature infants and as a tool to evaluate for brain injury in neonatal encephalopathy. Dr. El-Dib has also been investigating the use of near infra-red spectroscopy (NIRS) to assess cerebral circulation, oxygenation and oxygen metabolism in these population. Regarding neuroprotection, he has been a co-investigator in multiple studies on various neuroprotective agents including ascorbic acid, ibuprofen, melatonin and more recently autologous cord blood.

Joseph J. Volpe, MD  
Keynote Speaker  
Neurologist-in-Chief, Emeritus,  
Boston Children’s Hospital;  
Bronson Crothers Professor of Neurology, Emeritus,  
Harvard Medical School

Dr. Volpe received his M.D. degree from the Harvard Medical School, completed a Pediatric residency at the Massachusetts General Hospital, carried out a postdoctoral research fellowship at the NIH and trained in Pediatric Neurology at the Massachusetts General Hospital. He then served for 20 years on the faculty at Washington University in St. Louis, the last ten years of which as the Stein Professor of Neurology and Director of the Division of Pediatric Neurology. In 1990 he was recruited to Boston as Neurologist-in-Chief at the Children's Hospital, Bronson Crothers Professor of Neurology at the Harvard Medical School, and Chairman of the Department of Neurology at Children's Hospital/Harvard Medical School. Under Dr. Volpe’s leadership, the Department of Neurology grew to a faculty size of over 50 child neurologists and neuroscientists. The clinical and research programs became the largest and most diverse of any child neurology facility in the world.

Dr. Volpe generally is credited with having pioneered the field of neonatal neurology. His work in that field has included both clinical and basic research. The principal emphases of his clinical research have included elucidation of the
pathogenesis of the major hemorrhagic and ischemic lesions of the newborn, especially the premature newborn, and prevention of this brain injury. His basic research has used several model systems to investigate the mechanisms of oligodendroglial death in premature infants and the means to prevent this cell death. He led a long-standing NIH-funded program focused on brain injury in premature infants. In more recent years he has developed the concept of the "encephalopathy of prematurity. His neuropathological studies of human premature brain have elucidated widespread involvement of both neuronal and glial elements and both injurious and dysmaturational mechanisms. He has contributed more than 300 original articles and his book, Volpe’s Neurology of the Newborn, currently in its sixth edition, is considered "the bible" in the field.

He is especially widely recognized also for his dedication to the training of academic child neurologists, and many of his approximately 100 past trainees are key figures in child neurology programs throughout the world. He also has trained approximately 60 research fellows in clinical and basic research, most of whom hold academic positions worldwide. He was awarded the William Silen Lifetime Achievement in Mentoring Award by the Harvard Medical School. He has served on the editorial boards of virtually all of the major journals in neurology and pediatrics and has delivered numerous honorary and named lectures at universities worldwide.

He has received many awards nationally and internationally. These include the two most prestigious awards of the Child Neurology Society, both the Hower Award for lifetime achievement in child neurology and the Sachs Award for scientific achievement. He has been similarly honored by academic societies of child neurology, cardiology, neonatology, radiology and neurosurgery worldwide. In 2007 he was elected to the Institute of Medicine (now, National Academy of Medicine) of the U.S. National Academy of Sciences. The Boston Children’s Hospital has created the Joseph J. Volpe Chair in Neurology. Currently he is the Bronson Crothers Professor of Neurology, emeritus at the Harvard Medical School.

Peter Anderson, PhD
Professor of Pediatric Neuropsychology,
Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Science,
Monash University, Australia

Peter Anderson, PhD is Professor of Pediatric Neuropsychology and NHMRC Senior Research Fellow in the Monash Institute of Cognitive and Clinical Neuroscience at Monash University. He is the Founder and Chair of the Australian Pediatric Neuropsychology Research Network, on the Board of Directors for the Perinatal Society of Australia and New Zealand (PSANZ), co-director of the Australian Centre for Child Neuropsychological Studies, and on the Executive of the NHMRC Centre for Research Excellence in Newborn Medicine. His work focuses on understanding brain and cognitive development following early brain insults, and for the past 15 years his program has centered on neonatal conditions, especially infants born very preterm. Professor Anderson heads the Victorian Infant Brain Studies group based at the Murdoch Children’s Research Institute, which is internationally known for integrating neuroimaging in prospective
longitudinal studies of sick neonates. He is also heavily involved in large longitudinal observational studies, designing and evaluating the benefits of early intervention and cognitive training programs, and assessing the long-term consequences of perinatal interventions.

Sara Bates, MD  
Attending Neonatologist, Director of Clinical and Translational Research,  
Division of Newborn Medicine, Massachusetts General Hospital;  
Instructor of Pediatrics, Harvard Medical School

Dr. Sara V. Bates attended the University of Rochester School of Medicine and Dentistry and completed her pediatric residency at MGH. After completing the Harvard Neonatal-Perinatal Medicine Program in 2012, she joined the MGH Division of Newborn Medicine and Neonatology. Bates’ career in neuroscience began at Boston Children’s Hospital under the mentorship of Dr. Beth Stevens, with whom she studied the role of complement proteins and synaptic refinement in several HIE/seizure animal models. More recently, Bates has been developing brain atlases and clinical databases of normal newborn brain development and perinatal brain injuries with Drs. P. Ellen Grant and Randy Gollub. She serves as the Director of Clinical and Translational Research within the Division of Newborn Medicine and Neonatology at MGHFC and is the site PI for the following clinical trial, “A Phase II Multi-Site Study of Autologous Cord Blood cells for HIE.” She has lectured both locally and regionally on the topics of neuroimaging, injury detection, management of perinatal brain injuries, and emerging cell-based therapies. She is also founding director of the Infant Brain Center at MGHFC (http://www.massgeneral.org/infant-brain-center/).

Katherine Bell, MD  
Attending Neonatologist, Department of Pediatric Newborn Medicine,  
Brigham and Women’s Hospital;  
Instructor of Pediatrics, Harvard Medical School
Katherine Bell, MD graduated summa cum laude from Dartmouth College with a Bachelor of Arts degree in Economics and Biophysical Chemistry. She obtained her MD from the University of California, San Diego, during which time she conducted research on pediatric neuromonitoring strategies. Dr. Bell completed her clinical training in pediatrics at UCSF Benioff Children’s Hospital Oakland where she also served as Chief Resident, and was subsequently recruited into the Harvard neonatal-perinatal fellowship program, where she served as Chief Fellow. During fellowship, her clinical research under the mentorship of Dr. Mandy Belfort investigated the association of brain growth in preterm infants with body composition – the relative contribution of fat and lean mass to body weight – and was supported by a Marshall Klaus Award from the American Academy of Pediatrics. Her current research interests include novel assessments of nutritional status for preterm infants, including body composition measurement, and their ability to influence and predict brain growth and development. She is currently an attending neonatologist at Brigham and Women’s Hospital and Instructor of Pediatrics at Harvard Medical School.

Linda de Vries, MD
Professor in Neonatal Neurology,
Wilhelmina Children’s Hospital
University Medical Center, Utrecht, Netherlands

Linda de Vries received her M.D. degree from the Medical School in Groningen, completed a Pediatric residency at the Wilhelmina Children’s Hospital in Utrecht, carried out a research fellowship at the Hammersmith Hospital in London, UK. Subsequently she also trained as a Pediatric Neurologist in Leuven, Belgium. Since 1989, she has worked in the department of Neonatology in Utrecht since 1989, where she is a Professor in Neonatal Neurology since 2001.

Her research focuses on prediction of neurodevelopmental outcome in high risk preterm and full-term newborns, using neurophysiology and neuro-imaging methods. These at-risk children are also seen by her in the follow-up clinic. She has a special interest in post-hemorrhagic ventricular dilation, neonatal stroke and brain plasticity.
Pamela Dodrill, PhD, CCC-SLP
Feeding and Developmental Therapist, Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital

Pamela Dodrill, PhD, CCC-SLP is a pediatric speech-language pathologist who has worked in the area of infant feeding for 15 years. She works as part of the Feeding and Developmental Team in the Brigham and Women’s Hospital NICU. Before relocating to Boston, Dr. Dodrill worked at the Royal Children’s Hospital in Brisbane, Australia for over a decade, during which time she managed both inpatient and outpatient feeding caseloads. Dr. Dodrill completed her PhD in the area of infant feeding difficulties through the Children’s Nutrition Research Centre in Brisbane, and continues to conduct research in the area of childhood feeding difficulties and their management. Dr. Dodrill has numerous publications in this area, regularly presents at national and international scientific conferences, and teaches courses and workshops on managing pediatric feeding problems.

Christopher M. Elitt, MD, PhD
Attending Neurologist, Fetal-Neonatal Neurology Program, Boston Children’s Hospital;
Instructor of Neurology, Harvard Medical School

Christopher M. Elitt, MD, PhD completed his undergraduate studies at Brown University, graduating with honors in neuroscience. His interest in scientific investigation was sparked by work with Barbara Stonestreet, an internationally recognized neonatologist, studying the effects of antenatal steroids on in utero ischemic brain injury in preterm fetal sheep. He then joined the Medical Scientist Training Program at the University of Pittsburgh School of Medicine where he obtained his MD/PhD. Working with neurobiologists Brian Davis and Kathryn Albers, he investigated the role of target-derived growth factors in the development of chronic pain. He defined a novel population of nociceptors responsive to the GDNF-family member artemin and demonstrated that artemin upregulated TRP channels (TRPV1 and TRPA1), resulting in behavioral sensitivity to heat and cold. He then completed his clinical training at Boston Children’s Hospital in pediatrics and child neurology, followed by a fellowship in Fetal-Neonatal Neurology with Joseph Volpe and
Janet Soul. During his training, he returned to investigating perinatal brain injury and oligodendrocyte biology in Paul Rosenberg’s laboratory. He has charted an entirely new area of investigation into the role of TRP channels and intracellular zinc in the pathogenesis of white matter injury of prematurity in work supported by the NIH and numerous foundations. In 2015, he was promoted to a faculty position and currently performs fetal neurology consultations and cares for newborns in the Fetal-Neonatal Neurology Program, including those with metabolic and neurodegenerative disorders. He is passionate about translating discoveries from his laboratory work into novel therapies to reduce neurological disabilities in survivors of preterm birth.

P. Ellen Grant, MD
Director of Fetal and Neonatal Neuroimaging Research,
Boston Children’s Hospital Endowed Chair in Neonatology, Boston Children’s Hospital;
Professor of Radiology, Professor of Pediatrics, Harvard Medical School

P. Ellen Grant, MD is the Founding Director of the Fetal-Neonatal Neuroimaging and Developmental Science Center at Boston Children's Hospital. She holds a Master of Science degree in physics and an MD from the University of Toronto. She did her radiology residency at Vancouver General Hospital in British Columbia, Canada, and her fellowship in adult and pediatric neuroradiology at the University of California, San Francisco. She is now Professor of Radiology and Pediatrics at Harvard Medical School.

Dr. Grant headed the Division of Pediatric Radiology at Massachusetts General Hospital for five years before moving to Boston Children's Hospital to become the founding director of the Fetal-Neonatal Neuroimaging and Developmental Science Center and the first incumbent of Boston Children's Hospital Chair in Neonatology. The FNNDSC was started in 2009 and is focused on developing and optimizing tools and analysis streams for better understanding normal and abnormal brain development with the goal of improving cognitive and neurological outcomes. The three modalities involved in the center are Magnetic Resonance Imaging (MRI), Magnetoencephalography (MEG) and Near Infrared Spectroscopy (NIRS). At Children's she holds appointments in the Division of Newborn Medicine and the Department of Radiology, and she is a Professor of Radiology through Harvard Medical School. She is also a co-author of two popular textbooks for clinical neuroradiology and has won a number of awards for her research efforts as well as recognition for her clinical excellence.
Phillip L. Pearl, MD
Director of Epilepsy and Clinical Neurophysiology,
Boston Children's Hospital;
William G. Lennox Chair and Professor of Neurology
Harvard Medical School

Phillip L. Pearl, M.D. is Director of Epilepsy and Clinical Neurophysiology at Boston Children’s Hospital and William G. Lennox Chair and Professor of Neurology at Harvard Medical School. Dr. Pearl, originally from Baltimore, attended Johns Hopkins University and Peabody Conservatory of Music and University of Maryland School of Medicine. He took his residency at Baylor College of Medicine in Houston and fellowship at Boston Children’s Hospital. He was Division Chief of Neurology at Children’s National Medical Center and Professor of Neurology, Pediatrics, and Music at the George Washington University School of Medicine in Washington, DC until relocating to Boston in January 2014. His major research interest is inherited metabolic epilepsies with specific focus on disorders of GABA metabolism. Dr. Pearl recently completed his 2-year term as President of the Professors of Child Neurology and 6-year term on the Neurology Residency Review Committee of the ACGME. Dr. Pearl was elected Councilor to the Child Neurology Society 2015-2017 and Chief of the Child Neurology Section of the American Academy of Neurology in 2017. He has authored over 150 peer-reviewed manuscripts and over 90 chapters and reviews, written or edited four books including one translated into Chinese and another into Japanese, and produced a music CD which supports the Kids Care Fund, an established program to support the medical needs of indigent children.

Annapurna Poduri, MD, MPH
Neurologist and Director, Epilepsy Genetics Program,
Division of Epilepsy and Clinical Neurophysiology, Boston Children’s Hospital;
Associate Professor of Neurology, Harvard Medical School

Annapurna Poduri, MD, MPH received her BA in Biology from Harvard University, her MD from the University of Pennsylvania School of Medicine, and her MPH from the Harvard School of Public Health. She completed her pediatric
training at Boston Children’s Hospital, child neurology residency at the Children’s Hospital of Philadelphia, and returned to Boston for a fellowship in clinical neurophysiology at Boston Children’s Hospital. She went on to pursue training in neurogenetics in the clinic and through a post-doctoral fellowship with Dr. Christopher Walsh. Dr. Poduri began her independent research program at Boston Children’s Hospital in 2013 focusing on the genetics of epilepsy. She has been awarded the prestigious Dreifuss-Penny Epilepsy Award from the American Academy of Neurology and the Derek Denny-Brown Young Neurological Scholar Award from the American Neurological Association in 2015.

Kathi Salley Randall, RN, MSN, CNS, NNP
President, Synapse Care Solutions;
Neonatal NP; Entrepreneur, Inventor, Educator

Kathi Salley Randall, MSN, RNC, CNS, NNP-BC, is a clinical nurse specialist in the NICU at Riverside County Regional Medical Center in Moreno Valley, California. She is also the founder of Green NICU (http://www.greenNICU.com), through which she helps neonatal intensive care units create a "greener" environment for babies and staff and for the earth. Kathi recently was recognized with the Andrea Ravinett Martin Strong Voice Award from the Breast Cancer Fund, an organization dedicated to reducing and eliminating preventable causes of breast cancer from exposure to hazardous environmental chemicals and radiation.

Kathi’s tireless efforts in advocating for greener NICU environments and her work in promoting the mission of the Breast Cancer Fund earned her a 2011 Breast Cancer Fund Hero Award, awarded annually to 3 people who help to prevent breast cancer. Kathi plans to continue to use her voice to spread the word about breast cancer prevention as well as work to promote greener NICU environments. In Kathi’s words, "A baby’s first environment shouldn’t be toxic." She added that we must all work together to help women keep the prenatal and postnatal environments healthy for babies. Her mantra is that a green-centered NICU results in an environment that is "better for babies, better for you, and better for all.
Michael J. Rivkin, MD

Neurologist, Co-director,
Stroke and Cerebrovascular Center,
Director, Intensive Care Neurology Care Service,
Boston Children’s Hospital;
Associate Professor of Neurology,
Harvard Medical School

Michael J. Rivkin is the founder and director of the Stroke and Cerebrovascular Center at Boston Children’s Hospital. A child neurologist who is also fully trained in pediatrics, he has 20 years experience as an attending in child neurology at Boston Children’s. Dr. Rivkin also directs the Intensive Care Neurology Consultation Service in the Department of Neurology and has experience in the management of increased intracranial pressure, cerebral perfusion and neuroprotection. He participates in both acute inpatient care and long-term outpatient care of children with cerebrovascular disorders and stroke.

Dr. Rivkin received his MD degree from the University of Virginia School of Medicine. He completed an internship and residency in pediatrics at Rainbow Babies’ and Children's Hospital and a second residency in pediatric neurology at New England Medical Center. He subsequently completed a fellowship at Children’s Hospital Boston.

Dr. Rivkin's studies of learning disabilities have addressed issues of timing in affected children and matched controls. In his research, he has used functional MRI in studies of children with learning disabilities and matched controls to localize timing functions and impairments thereof within the cerebrum. He demonstrated that the supplementary motor area and right superior temporal gyrus participate in a network needed for internally timed paced finger tapping in children. He delineated deficits in information processing in children with developmental dyslexia. Dr. Rivkin delineated norms for a working memory task for children 8-12 years of age. In addition, he successfully applied diffusion tensor imaging and dual echo techniques to the study of postnatal brain development in premature infants between 28 weeks' gestation and term.
Arnold J. Sansevere, MD
Neurologist, Department of Neurology, Boston Children’s Hospital;
Instructor in Neurology, Harvard Medical School

Arnold J. Sansevere, MD received his medical degree from Drexel University College of medicine. He completed a pediatric residency at Schneider’s Children’s Hospital in New Hyde Park, NY. He went on to complete his child neurology residency and epilepsy fellowship at Boston Children’s Hospital. His main interests are in continuous EEG monitoring in the neonatal and pediatric intensive care unit as well as medical education.

Dr. Sansevere is an active member of the Department of Neurology /Division of Epilepsy at Boston Children’s Hospital. Within the field of continuous EEG monitoring his main focus has been on seizure prediction and the impact of seizure burden on outcome. In addition, his area of research interest includes the role of EEG background as a predictor of seizure and outcome.

Dr. Sansevere is active in medical education as the Child Neurology Clerkship Director where his focus is on innovative adult learning strategies and teaching techniques to improve the education of medical students learning child neurology.

Sarbattama (Rimi) Sen, MD
Attending Neonatologist,
Department of Pediatric Newborn Medicine,
Brigham and Women’s Hospital;
Assistant Professor of Pediatrics, Harvard Medical School

Dr. Sen is a neonatologist and researcher in the Department of Pediatric Newborn Medicine. Her research focuses on the impact of obesity during pregnancy on maternal and infant health. She utilizes observational and translational
studies to understand the underlying mechanisms and clinical trials to devise strategies to improve outcomes. Dr. Sen is an Assistant Professor of Pediatrics at Harvard Medical School.

Christopher Smyser, MD, MSCI
Associate Professor of Neurology, Radiology, and Pediatrics, Director, Neonatal Neurology Clinical Program, Washington University School of Medicine

Dr. Christopher Smyser is the Director of the Neonatal Neurology Clinical Program at Washington University/St. Louis Children’s Hospital, where he is an Associate Professor of Neurology, Pediatrics and Radiology. He also co-directs the Baker Family Fellowship in Neonatal Neurology and Cardiac Neurodevelopmental Follow-Up Clinic at Washington University. He is a pediatric neurologist with additional training in neonatal neurology.

With a strong background in biomedical engineering, Dr. Smyser’s research focuses on the use of advanced neuroimaging techniques to provide greater understanding of early brain development and the pathway to neurodevelopmental disabilities. He is co-director of the Washington University Neonatal Developmental Research (WUNDER) Laboratory with his colleague Dr. Cynthia Rogers. Dr. Smyser’s recent research efforts have centered upon the use of resting state-functional connectivity MRI and diffusion MRI to investigate functional and structural brain development in high-risk pediatric populations from infancy through adolescence. He is currently the principal investigator for multiple NIH-funded longitudinal studies focused upon defining the deleterious effects of prematurity, brain injury and environmental exposures on neurodevelopmental and psychiatric outcomes through development and application of state-of-the-art neuroimaging approaches. He has numerous related publications in the fields of neonatal and pediatric neurology.
Janet Soul, MD
Neurologist, Director, Fetal-Neonatal Neurology Program,
Boston Children’s Hospital;
Associate Professor of Neurology, Harvard Medical School

Janet Soul, MD is a pediatric neurologist whose area of clinical expertise and research is in Fetal and Neonatal Neurology with a focus on the etiology, pathogenesis, outcome and prevention of early acquired brain injury. Dr. Soul directs the Fetal-Neonatal Neurology Program that provides specialized care to fetuses, newborns and children with neurologic disorders that begin in utero or in the neonatal period. This program, with its associated clinical services, provides specialized training for neurology, neonatology and pediatric fellows and residents. Dr. Soul’s research and writing are focused on early acquired brain injury, particularly hypoxic-ischemic brain injury, involving a lack of oxygen and blood flow to the brain; the treatment of seizures in term newborns; and periventricular leukomalacia (injury to the white matter of the brain), intraventricular hemorrhage (bleeding into the ventricles of the brain) and hydrocephalus in preterm newborns. Dr. Soul is the PI for a randomized, double-blind, controlled trial of bumetanide for the treatment of neonatal seizures, funded by an R01 from NINDS (NS066929), which is the first to study a novel drug (bumetanide) with an anticonvulsant mechanism specific to the newborn brain. The broad goal of her research is to understand the causes of these brain injuries and to detect them at their earliest onset in order to develop and test neuroprotective therapies that prevent or minimize brain injury.

Brian Walsh, MBBS
Consultant Neonatologist
Cork University Maternity Hospital
Cork, Ireland
Dr. Walsh is a neonatologist at Cork University Maternity Hospital Cork, Ireland with a clinical and research interest in neuro-monitoring and neuro-protection. His initial training in neonatology was in Ireland, where he underwent several years of post-graduated NICU training, before enrolling in the Harvard Perinatal-Neonatal Fellowship, Boston, USA. During his training, he was awarded a Clinician Scientist Fellowship by Molecular Medicine Ireland, and was awarded a PhD for his thesis “Early biomarkers to predict grade of encephalopathy following hypoxic ischaemic injury” which focused on novel methods to detect injury immediately following oxygen deprivation during delivery. His thesis resulted in numerous publications, additional grants and collaborative research as we attempted to validate the promising biomarkers he discovered. After working as an attending neonatologist at Brigham and Women, he was recruited to work at Cork University Maternity Hospital which he joined in 2017.

Dr. Walsh has numerous publications and presentations in the field of neonatal neurology. His research has focused on neuroimaging in hypoxic ischemic encephalopathy, neuro-protective strategies, standardized neurological examinations, aEEG, continuous multi-channel EEG, and blood biomarkers.

Benjamin C. Warf, MD
Director, Neonatal and Congenital Anomaly Neurosurgery,
Boston Children’s Hospital;
Professor of Neurosurgery, Harvard Medical School

Benjamin C. Warf, MD is a Pediatric Neurosurgeon who has revolutionized the treatment of intra-cranial diseases in very young children, with a particular focus on hydrocephalus. In carefully designed clinical trials, he demonstrated that a relatively straightforward, one-time treatment using modern endoscopic techniques (based on a surgical approach first attempted in the early twentieth century) results in outcomes that are at least as safe and effective as ventricular shunts, but requires far less medical infrastructure and post-surgical maintenance. As an adjunct to his clinical practice, Warf designed a training program and network for neurosurgeons throughout Africa, Asia, and the Middle East, increasing exponentially the number of children who can now be treated using his method. Having returned to practicing pediatric neurosurgery in the United States, he is now working to expand worldwide knowledge of and access to his hydrocephalus treatment, as well as for other pediatric neurosurgical diseases. Through his research, practice, teaching, and organizing activities, Warf is demonstrating that standards of health care can be improved alongside access to that care, in both the developing and the developed world.

Dr Warf received a B.S. (1980) from Georgetown College and an M.D. (1984) from Harvard Medical School. He completed his residency (1985–1991) in neurosurgery at Case Western Reserve University. From 2000 to 2006, he served as medical director and chief of surgery at CURE Children’s Hospital of Uganda, and in 2010 he joined the faculty of Harvard Medical School, where he is currently an associate professor of surgery and director of the Neonatal and

Lianne Woodward, PhD
Director of Research, Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital; Professor of Pediatrics, Harvard Medical School

Lianne Woodward is a PhD-trained child developmental psychologist. She is currently a Professor at Harvard Medical School and Director of Research at Brigham and Women's Hospital, Boston. Her research uses a life course perspective to understand the developmental processes that place children at risk of adverse cognitive, educational, motor and mental health outcomes. These processes include the effects of preterm birth, brain injury, prenatal drug exposures, parenting and psychosocial adversity.

Edward Yang, MD, PhD
Attending Radiologist, Director of Neuro MR, Boston Children’s Hospital; Instructor of Radiology, Harvard Medical School

Edward Yang, MD, PhD obtained a B.S. in Chemistry from Stanford University in 1996. He subsequently enrolled in the Medical Scientist Training Program at the Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program in New York, obtaining a Ph.D. in Molecular Cell Biology from Rockefeller University in 2003 and a M.D. from Cornell University in 2004. After completing a medical internship at Brigham & Women’s Hospital in 2005, he completed a residency in Diagnostic Radiology (2009) and a fellowship in Neuroradiology (2010) at the Hospital of the University of Pennsylvania.
Following an additional fellowship in Pediatric Neuroradiology at The Children’s Hospital of Philadelphia, he served as Assistant Professor and Director of Pediatric Neuroradiology, University of Chicago Pritzker School of Medicine, Chicago, IL. He has been an Attending Neuroradiologist at Boston Children’s Hospital since 2013. He has a special interest in genetic conditions affecting the central nervous system and congenital brain malformations.